Zhuoyuan "Jacob" WANG

Porter Hall, Carnegie Mellon University Email: zhuoyuaw@andrew.cmu.edu
Pittsburgh, PA, 15213 Homepage: https://jacobwang925.github.io

Research Interests

My interests focus on developing safe and efficient control and AI solutions with long-term guarantees and real-time efficiency in high-dimensional and interactive systems, ranging from theory to applications.

EDUCATION

Carnegie Mellon University

Feb 2021 - May 2026

Ph.D., Electrical and Computer Engineering.

Tsinghua University

Sep 2016 - Jun 2020

B.E., Automation.

Professional Experience

Mitsubishi Electric Research Laboratories

May 2025 - Aug 2025

Research Intern, Computational Sensing Group.

SELECTED PUBLICATIONS

Wang, Z., Chern, A., & Nakahira, Y. "Generalizable physics-informed learning for stochastic safety-critical systems." Under Review for IEEE Transaction on Automatic Control (TAC). Short version in Learning for Dynamics and Control Conference (L4DC), 2023.

Wang, Z., Jing, H., Kurniawan, C., Chern, A., & Nakahira, Y. "Myopically verifiable probabilistic certificates for safe control and learning." Under Review for IEEE Transaction on Automatic Control (TAC). Short version in IEEE American Control Conference (ACC), 2022.

Wang, Z., Romagnoli, R., Azizzadenesheli, K., & Nakahira, Y. "Neural spline operators for risk quantification in stochastic systems." In IEEE Conference on Decision and Control (CDC), 2025.

Wang, Z., Keller, R., Deng, X., Hoshino, K., Tanaka, T., & Nakahira, Y. "Physics-informed representation and learning: Control and risk quantification." In AAAI Conference on Artificial Intelligence, 2024.

Full Publications

Journal Publications

Wang, Z., Chern, A., & Nakahira, Y. "Generalizable physics-informed learning for stochastic safety-critical systems." Under Review for IEEE Transaction on Automatic Control (TAC).

Wang, Z., Jing, H., Kurniawan, C., Chern, A., & Nakahira, Y. "Myopically verifiable probabilistic certificates for safe control and learning." Under Review for IEEE Transaction on Automatic Control (TAC).

Hoshino, K., Wang, Z., & Nakahira, Y. "Scalable long-term safety certificate for large-scale systems." In IEEE Control Systems Letters, 2023.

Shi, W., Huang, G., Song, S., Wang, Z., Lin, T., & Wu, C. "Self-supervised discovering of interpretable features for reinforcement learning." In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

Conference Proceedings

Wang, Z., Romagnoli, R., Azizzadenesheli, K., & Nakahira, Y. "Neural spline operators for risk quantification in stochastic systems." In IEEE Conference on Decision and Control (CDC), 2025.

Wang, Z., Romagnoli, R., Ratchford, J., & Nakahira, Y. "Physics-informed deep B-spline networks for dynamical systems." Under Review.

Wang, Z., Keller, R., Deng, X., Hoshino, K., Tanaka, T., & Nakahira, Y. "Physics-informed representation and learning: Control and risk quantification." In AAAI Conference on Artificial Intelligence, 2024.

Pandya, R.*, Wang, Z.*, Nakahira, Y., & Liu, C. "Towards proactive safe human-robot collaborations via data-efficient conditional behavior prediction." In IEEE International Conference on Robotics and Automation (ICRA), 2024.

Wang, Z., & Nakahira, Y. "A generalizable physics-informed learning framework for risk probability estimation." In Learning for Dynamics and Control Conference (L4DC), 2023.

Gangadhar, S.*, Wang, Z.*, Poku, K., Yamada, N., Honda, K., Nakahira, Y., Okuda, H., & Suzuki, T. "An occlusion- and interaction-aware safe control strategy for autonomous vehicles." In IFAC World Congress, 2023.

Wang, Z.*, Jing, H.*, Kurniawan, C., Chern, A., & Nakahira, Y. "Myopically verifiable probabilistic certificate for long-term safety." In IEEE American Control Conference (ACC), 2022.

Gangadhar, S.*, **Wang**, **Z.***, Jing, H., & Nakahira, Y. "Adaptive safe control for driving in uncertain environments." In IEEE Intelligent Vehicles Symposium (IV), 2022.

Funding Proposal Development

"New Sampling Paradigms for Safety-constrained, High-dimensional, and Partially Observable Path Integral Control." NSF DCSD, 2025.

"Probabilistic Safety Certificates for Data-Driven Perception and Control for Multi-agent Systems." NSF CPS, 2022.

^{*} indicates equal contribution.

Honors and Awards

TIONORS AND AWARDS	
Michel and Kathy Doreau Graduate Fellowship at Carnegie Mellon University	2022
Mathematical Contest in Modeling (MCM) Honorable Mention	2019
Contemporary Undergraduate Mathematical Contest in Modeling (CUMCM) First Prize	2018
Tsinghua University Scholarship - Excellent Academic Performance	2018
Talks and Presentations	
"Deep B-Spline Representations in Physics-Informed Neural Networks and Operators" Mitsubishi Electric Research Laboratories, Cambridge, MA	2025
"Myopically Verifiable Probabilistic Certificate for Long-term Safety" American Control Conference (ACC), Atlanta, GA	2022
"Long-term Safety for Autonomous Systems" MIT REALM Lab, Cambridge, MA	2022
Teaching & Service	
Faculty Search Council (CMU ECE)	2024, 2025
Teaching Assistant (CMU 18-475 S24, CMU 18-370 F23)	2023, 2024
Conference Reviewer: CDC 2023–2025, ACC 2024–2025, NECSYS 2025, AAAI 2024–2026, NeurIPS 2025, RSS 2023	, ICLR 2025,
Journal Reviewer: TAC, RICO, CONES	
Mentorship	
Reece Keller — Ph.D., CMU Neuroscience	2023
V. D. DID CHUEL I I C E	2022

Reece Keller — Ph.D., CMU Neuroscience	2023
Xiyu Deng — Ph.D., CMU Electrical and Computer Engineering	2023
Siddharth Gangadhar — M.S., CMU Electrical and Computer Engineering	2021 - 2023
Kofi Puku — M.S., CMU Electrical and Computer Engineering	2022 - 2023
Tongyao Jia — M.S., CMU Electrical and Computer Engineering	2024 -
Lin Zhan — M.S., CMU Electrical and Computer Engineering	2024 - 2025
Neeraj Ramesh — Undergrad, CMU Electrical and Computer Engineering	2023 - 2024
Mentored students include 4 individuals from underrepresented groups in STEM.	

Last updated: September 27, 2025